Sparse Nonparametric Graphical Models
نویسندگان
چکیده
منابع مشابه
Sparse Nonparametric Graphical Models
We present some nonparametric methods for graphical modeling. In the discrete case, where the data are binary or drawn from a finite alphabet, Markov random fields are already essentially nonparametric, since the cliques can take only a finite number of values. Continuous data are different. The Gaussian graphical model is the standard parametric model for continuous data, but it makes distribu...
متن کاملSparse Matrix Graphical Models
Matrix-variate observations are frequently encountered in many contemporary statistical problems due to a rising need to organize and analyze data with structured information. In this paper, we propose a novel sparse matrix graphical model for this type of statistical problems. By penalizing respectively two precision matrices corresponding to the rows and columns, our method yields a sparse ma...
متن کاملNonparametric Graphical Models Pni Meeting Lecture #1
My name is Han Liu, I am an assistant professor in ORFE. This is joint work with Ken Norman and Jeremy, Xiaoyan, and Angela. A nonparametric graphical model is a very powerful tool for analyzing complex data; these tools can be published in highly theoretical journals (statistics), but on the other spectrum, you can publish this in Nature, or Quantitative Finance. It is simple, theoretically in...
متن کاملNonparametric Tree Graphical Models via Kernel Embeddings
We introduce a nonparametric representation for graphical model on trees which expresses marginals as Hilbert space embeddings and conditionals as embedding operators. This formulation allows us to define a graphical model solely on the basis of the feature space representation of its variables. Thus, this nonparametric model can be applied to general domains where kernels are defined, handling...
متن کاملLearning to Discover Sparse Graphical Models
We consider structure discovery of undirected graphical models from observational data. Inferring likely structures from few examples is a complex task often requiring the formulation of priors and sophisticated inference procedures. In the setting of Gaussian Graphical Models (GGMs) a popular estimator is a maximum likelihood objective with a penalization on the precision matrix. Adapting this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistical Science
سال: 2012
ISSN: 0883-4237
DOI: 10.1214/12-sts391